Math 255A' Lecture 16 Notes

Daniel Raban

November 4, 2019

1 Adjoints and Hermitian Operators on Hilbert Spaces

Today's lecture was given by a guest lecturer, Professor Sorin Popa.

1.1 Sesquilinear forms and adjoints

If $T \in \mathcal{B}(X,Y)$, we have the adjoint operator $T^* \in \mathcal{B}(Y^*,X^*)$. If H,K are Hilbert spaces, then $H^* \cong \overline{H}$, the conjugate of H (i.e. H itself). So if $T \in \mathcal{B}(H,K)$, we get $T^* \in \mathcal{B}(K,H)$.

Definition 1.1. A **sesquilinear form** is a function $u: H \times K \to \mathbb{C}$ which is linear in the first variable, antilinear in the second variable, and bounded (as a bilinear map): $|u(\xi,\eta)| \leq C \|\xi\|_H \|\eta\|_K$ for all $\xi \in H$ and $\eta \in K$.

Example 1.1. Let $A \in \mathcal{B}(H,K)$ and $B \in \mathcal{B}(K,H)$. Then $u_A(\xi,eta) = \langle A\xi,\eta \rangle_K$ and $u_B(\xi,\eta) = \langle \xi,B\eta \rangle_H$ are sesquilinear.

Theorem 1.1. Let H, K be Hilbert spaces. If $u : H \times K \to \mathbb{C}$ is sesquilinear and bounded by C, then there exist unique $A \in \mathcal{B}(H, K)$ such that $u = u_A = u_B$ with $||A||, ||B|| \le K$.

Remark 1.1. In fact, ||u|| = ||A|| = ||B||.

Proof. For each $\xi \in H$, let $L_{\xi}: K \to \mathbb{C}$ with $L_{\xi}(\eta) = \overline{u(\xi, \eta)}$. This is linear, and $|L_{\xi}(\eta)| \le C \|\xi\| \|\eta\| =: C_{\xi} \|\eta\|$ for all η , so $L_{\xi} \in K^*$. By Riesz representation, there is an $f \in K$ with $\|f\| \le C \|\xi\|$ such that $L_{\xi}(\eta) = \langle \eta, f \rangle$. Thus, $A: H \to K$ defined by $A(\xi) = f$ is linear: $A(\alpha_1 \xi_1 + \alpha_2 \xi_2) = \alpha_1 A(\xi_1) + \alpha_2 A(\xi_2)$ by the uniqueness in the Riesz representation theorem. We also have $\|A(\xi)\| \le C \|\xi\|$, so A is bounded.

Definition 1.2. If $A \in \mathcal{B}(H,K)$, the unique $B \in \mathcal{B}(K,H)$ that satisfies $u_A(\xi,\eta) = \langle A\xi,\eta\rangle_K = u_B(\xi,\eta) = \langle \xi,B\eta\rangle_H$ is called the **adjoint** of A (denoted A^*).

Proposition 1.1. $u \in \mathcal{B}(H,K)$ is an isomorphism of Hilbert spaces if and only if u is invertible and $u^{-1} = u^*$.

Proof. We have that

$$||u\xi||^2 = \langle u\xi, u\xi \rangle = \langle u^*u\xi, \xi \rangle = \langle \xi, \xi \rangle$$

for all $\xi \in H$ if and only if $u^*u = 1$. Since u is invertible, $u^* = u^{-1}$.

Proposition 1.2. Let $A, B \in \mathcal{B}(H, K)$, and let $C \in \mathcal{B}(K, K')$.

- 1. $(\alpha A + \beta B)^* = \overline{\alpha} A^* + \overline{\beta} B^*$.
- 2. $(CA)^* = A^*C^*$.
- 3. If H = K (so $A \in \mathcal{B}(H)$), then $(A^*)^* = A$.
- 4. If A is invertible, then A^* is invertible and $(A^*)^{-1} = (A^{-1})^*$.

Proposition 1.3. If $A \in \mathcal{B}(H)$, $||A^*|| = ||A|| = ||A^*A||^{1/2}$.

Remark 1.2. The second equality is something you don't get in Banach spaces.

Proof.

$$||A||^2 = \sup_{\xi \in (H)_1} \langle A\xi, A\xi \rangle = \sup_{\xi \in (H)_1} \langle A^*A\xi, \xi \rangle$$

$$\leq \sup_{\xi \in (H)_1} \langle A^*A\xi, \xi \rangle \leq \sup_{\xi \in (H)_1} ||A^*A\xi|| ||\xi||$$

$$= ||A^*A|| \leq ||A^*|| ||A||.$$

So we get that $||A|| \le ||A^*||$. In particular, this holds for $||A^*||$, so we get $||A^*|| \le ||A||$. Then all inequalities are equalities, so $||A^*|| = ||A|| = ||A^*A||^{1/2}$.

Example 1.2. If $M_{\varphi} \in \mathcal{B}(L^2(X,\mu))$ with $\varphi \in L^{\infty}(X,\mu)$, is multiplication by φ , then $(M_{\varphi})^* = M_{\overline{\varphi}}$.

Example 1.3. The right shift $S: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ given by $S(\alpha_1, \alpha_2, \dots) = (0, \alpha_1, \alpha_2, \dots)$ is isometric. Then $S^*(\alpha_1, \alpha_2, \dots) = (\alpha_2, \alpha_3, \dots)$.

1.2 Hermitian operators

Definition 1.3. $A \in \mathcal{B}(H)$ is **Hermitian** (or **self adjoint**) if $A = A^*$.

Proposition 1.4. A is Hermitian if and only if $\langle A\xi, \xi \rangle \in \mathbb{R}$ for all $\xi \in H$.

Proof. (\Longrightarrow): We have

$$\langle A\xi, \xi \rangle = \langle \xi, A\xi \rangle = \overline{\langle A\xi, \xi \rangle},$$

so $\langle A\xi, \xi \rangle \in \mathbb{R}$.

(\Leftarrow): We would like to prove that if $\langle A\xi, \xi \rangle = \langle \xi, A\xi \rangle$ for all $\xi \in H$, then $\langle A\xi, \eta \rangle = \langle \xi, A\eta \rangle$ for all $\xi, \eta \in H$. We use a **polarization** trick: check that

$$\langle A\xi, \eta \rangle = \frac{1}{4} \sum_{i=0}^{3} i^{k} \left\langle A(\xi + i^{k}\eta), \xi + i^{k}\eta \right\rangle,$$

$$\langle \xi, A, \eta \rangle = \frac{1}{4} \sum_{i=0}^{3} i^{k} \left\langle \xi + i^{k} \eta, A(\xi + i^{k} \eta) \right\rangle.$$

The right hand sides are equal, so the left hand sides are, as well.

Proposition 1.5. Let $A \in \mathcal{B}(H)$.

1.
$$||A|| = \sup_{\xi, \eta \in (H)_1} |\langle A\xi, \eta \rangle|$$
.

2. If
$$A = A^*$$
, then $||A|| = \sup_{\xi \in (H)_1} |\langle A\xi, \xi \rangle|$.

Proof. For (1), we have \geq . For \leq , take $\eta = \frac{A\xi}{\|A\xi\|}$ for ξ with $A\xi \neq 0$. For (2), we use

$$\langle A(\xi \pm \eta), \xi \pm \eta \rangle = \langle A\xi, \xi \rangle \pm \langle A\xi, \eta \rangle \pm \langle A\eta, \xi \rangle + \langle A\eta, \eta \rangle$$

$$= \langle A\xi, \xi \rangle \pm \langle A\xi, \eta \rangle \pm \overline{\langle A\xi, \eta \rangle} + \langle A\eta, \eta \rangle$$

$$= \langle A\xi, \xi \rangle \pm 2 \operatorname{Re} \langle A\xi, \eta \rangle + \langle A\eta, \eta \rangle$$

By subtracting one from the other, we get

$$4\operatorname{Re}\langle A\xi, \eta \rangle = \langle A(\xi + \eta), \xi + \eta \rangle - \langle A(\xi - \eta), \xi - eta \rangle$$

$$\leq \left(\sup_{\xi \in (H)_1} |\langle A\xi, \xi \rangle| \right) (\|\xi + \eta\|^2 + \|\eta - \eta\|^2)$$

$$= 2 \left(\sup_{\xi \in (H)_1} |\langle A\xi, \xi \rangle| \right) (\|\xi\|^2 + \|\eta\|^2)$$

$$\leq 4 \sup_{\xi \in (H)_1} |\langle A\xi, \xi \rangle|.$$

By part 1, we get $||A|| \le \sup_{\xi \in (H)_1} |\langle A\xi, \xi \rangle|$.

Corollary 1.1. If $\langle A\xi, \xi \rangle = 0$ for all $\xi \in H$, then A = 0.

Proof. For any $A \in \mathcal{B}(H)$, we can decompose A as two self-adjoint operators:

$$A = \frac{A + A^*}{2} + \frac{A - A^*}{2i}.$$

If $\langle A\xi, \xi \rangle = 0$, then this is true for each of these two parts. So each of these parts has norm equal to 0 by the previous proposition.